Sunday, 16 October 2016

Using Divide and Conquer Strategies design a function for Binary Search using java

For binary search, the array should be arranged in ascending or descending order. Binary search relies on divide and conquer strategy in a sorted list.

Program logic: Take elements in an array called n[]. Then apply bubble sorting algorithm on it. After that a search value has taken. The desired elements is compared with the middle most elements of the array. If the search element is smaller to the middle most elements then process is repeated with the first half of the array. If the search element is greater to the middle most elements then process is repeated with the second half of the array. If the search element is equal to the middle most elements search is completed and position is return in ‘pos’  variable.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

import java.io.*;

public class BinarySearch {

    public static void main(String args[]) throws IOException {
        int n[] = new int[10];
        int i, s, f = 0, t, j;
        int low, high, mid, pos;
        InputStreamReader in = new InputStreamReader(System.in);
        BufferedReader br = new BufferedReader(in);
        System.out.println("Enter elements in array:");
        for (i = 0; i < 10; i++) {
            n[i] = Integer.parseInt(br.readLine());
        }
        System.out.println("Enter element to Search:");
        s = Integer.parseInt(br.readLine());
        // Sorting of array
        for (i = 0; i < 9; i++) {
            for (j = 0; j < 9 - i; j++) {
                if (n[j] > n[j + 1]) {
                    t = n[j];
                    n[j] = n[j + 1];
                    n[j + 1] = t;
                }
            }
        }
        System.out.println("Sorted array:");
        for (i = 0; i < 10; i++) {
            System.out.print(n[i] + " ");
        }
        // Binary Search
        high = 10;
        low = 0;
        pos = 0;
        while (low <= high) {
            mid = (low + high) / 2;
            if (s < n[mid]) {
                high = mid - 1;
            } else if (s > n[mid]) {
                low = mid + 1;
            } else if (s == n[mid]) {
                pos = mid + 1;
                break;
            }
        }
        System.out.println("\n Search result");
        System.out.println(s + " is located at position " + pos);
    }
}

Sample Output
Enter elements in array:
5
7
8
4
5
6
9
1
2
3
Enter element to Search:
4
Sorted array:
1 2 3 4 5 5 6 7 8 9
Search result
4 is located at position 4
SN
Variables
Type
Description
1.
main()
Function
This is the main entry point of the program
2.
n[]
int
To store the values in an array
3.
i , j
int
For running the loop
4.
s
int
To store the input (element to be searched)
5.
t
int
For temporarily storing a value
6.
low
int
To store the value in the lowest position
7.
mid
int
To store the value in the middle position
8.
high
int
To store the value in the highest position
9.
pos
int
To store the position of the value which was searched(only if exists)
10.
in
InputStreamReader
To instantiate the InputStreamReader class which exists in java.iopackage
11.
br
BufferedReader
To instantiate the BufferedReader class which exists in java.iopackage using the above variable as passing parameter
Analysis of binary search:
In this algorithm every time we are reducing the search area. So number of comparisons keep on decreasing. In worst case the number of comparison is most log ( N + 1 ). So it is an efficient algorithm when compared to linear search.
  

No comments:

Post a Comment